

Booster Down Time

Eric Prebys

Logged Down Times

	T	
Downtime Summary Sat Jan 1 00:00:00 2005 to Mon Aug 22 10:45:31 2005		
System with 5 minutes or more of downtime	1905.63 hrs. of DT for Interval of 5601.76 hrs. Downtime/Interval= 34.02 %	Number & Details
TEVATRON ACCELERATOR SYSTEMS	• 444.77 hrs. • 23.34% of total downtime (1905.63 hrs.) • 7.94% of Interval (5601.76 hrs.)	179 Examine
MAIN INJECTOR	• 429.07 hrs. • 22.52% of total downtime (1905.63 hrs.) • 7.66% of Interval (5601.76 hrs.)	423 Examine
ANTIPROTON SOURCE	 331.72 hrs. 17.41% of total downtime (1905.63 hrs.) 5.92% of Interval (5601.76 hrs.) 	169 Examine
OTHER SYSTEMS	251.25 hrs. 13.18% of total downtime (1905.63 hrs.) ■ 4.49% of Interval (5601.76 hrs.)	572 Examine
BOOSTER ACCELERATOR	215.95 hrs. 11.33% of total downtime (1905.63 hrs.) 3.86% of Interval (5601.76 hrs.)	1307 Examine
PRE-ACC AND LINAC	123.08 hrs. ■ 6.46% of total downtime (1905.63 hrs.) ■ 2.20% of Interval (5601.76 hrs.)	822 Examine
FIXED TARGET	68.35 hrs. ■ 3.59% of total downtime (1905.63 hrs.) ■ 1.22% of Interval (5601.76 hrs.)	77 Examine
CONTROL SYSTEMS	 31.90 hrs. 1.67% of total downtime (1905.63 hrs.) 10.57% of Interval (5601.76 hrs.) 	34 Examine
RECYCLER	 9.55 hrs. 10.50% of total downtime (1905.63 hrs.) 10.17% of Interval (5601.76 hrs.) 	8 Examine

Most Entries, but total 3.9%

Booster Down Time Breakdown

PROTON PLAN Downtime Logger not Whole Story

- Counts only time failure brings program "down"
- Generally does not count access to repair problem
- Uptime to MiniBooNE since 2004 shutdown: 85%
 - > Includes scheduled and unscheduled down time
 - > Includes detector down time (small effect)
 - > Up from FY04 (81%)
- Does not take into account degraded performance or recovery time.
 - > In particular, need all 18 RF stations working for best slip stacking performance
 - > Policy to date: "Run until performance totally unacceptable"

Degraded Performance

PROTON PLAN Proposed RF Power Amplifier (PA) upgrade

Existing PA's original, 35 year old technology:

- > In-tunnel PA module contains 1 PA tube driven by 20 distributed amplifier tubes in a cascode configuration.
- > DA tube life limits lifetime to ~1 year -> must replace $1\frac{1}{2}$ per month
- > \$300-\$400K/year to replace tubes
- > ~60 tech-hrs/PA for repair.
- > Driver cables old and some radiation damaged.
- Modulators have reliability concerns.
- > RF techs typically receive ~100 mR/quarter

Proposed solution:

- > Replace with solid state DA, as in Main Injector
- > Tunnel life goes from 1 yr -> 3 yrs
- > New cables
- New, more reliable modulators
- > Already have one station operating in this mode (RF12)
- > EXPENSIVE! (~\$7M)
- > Will not solve all of our problems

Down Time in 2005

Down Time (3/9/2005->8/1/2005)

Corrected Down Times

Miscellaneous Down Time (removing worst incidents)

Available Stations

Total Stations

Typically have 18 stations ~85-90% of the time, outside of "catastrophic" incidents

Reasons for RF failures

Things improved by PA upgrade:

- > PA failures
- > Cable failures
- Modulator failures

Other problems:

- > On-cavity damper resistors
- > On-cavity water leaks
- > On-cavity tuner arc problems
- > Anode supply problems
 - See Bob Ducar's talk
- > Bias supply problems
 - Rare, but limit rate

RF Plan

- Goal: Run with 18 cavities >95% of the time
- Near term:
 - Replace existing 19th prototype cavity with ordinary spare, driven by solid state PA
 - Will dramatically increase fraction of time with 18 stations
 - Will help evaluate relative performance of solid state PA's
 - > Repair cavities as soon as they significantly degrade
 - · Maximize time with >900 kV of gap envelope voltage
 - More accurately evaluate improvements of solid state drivers
 - ie, effect confounded by "run 'em into the ground" policy
 - Work with RF department to establish a reasonable preventive maintenance program
 - Eg, replace any old PA's whenever a tunnel access is made
- Longer term:
 - > Evaluate benefit of solid state upgrade
 - > Consider and compare other options
 - Modulator refurbishment
 - · Cable replacement
 - 20th cavity
 - > Hope to make a decision by 2006

PROTON PLAN Other Reliability Issues

Power Supplies:

- > Low Voltage 400 MeV Line Power Supplies
 - Replacing unreliable "Power 10" series with newer supplies (handled through department, not plan)
- > Corrector supplies
 - Not a large source of down time
 - Will ALL be replaced as part of corrector upgrade (~2007)
- > Kicker supplies
 - Investigating options
 - Not currently in plan

Conclusions

- Considering its age, the Booster has maintained remarkable reliability as the demands on it have increased.
- Booster RF remains our biggest reliability issue
 - > Down time
 - > Reduced performance
- In the short term, we can increase reliability
 - > 19th cavity
 - > Prompt repair of degraded PA's
- In the longer term, we are investigating other options